Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biomol Struct Dyn ; : 1-12, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-20232244

ABSTRACT

The coronavirus disease (COVID-19) pandemic has rapidly extended globally and killed approximately 5.83 million people all over the world. But, to date, no effective therapeutic against the disease has been developed. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enters the host cell through the spike glycoprotein (S protein) of the virus. Subsequently, RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of the virus mediate viral transcription and replication. Mechanistically inhibition of these proteins can hinder the transcription as well as replication of the virus. Recently oxysterols and its derivative, such as 25 (S)-hydroxycholesterol (25-HC) has shown antiviral activity against SARS-CoV-2. But the exact mechanisms and their impact on RdRp and Mpro have not been explored yet. Therefore, the study aimed to identify the inhibitory activity of 25-HC against the viral enzymes RdRp and Mpro simultaneously. Initially, a molecular docking simulation was carried out to evaluate the binding activity of the compound against the two proteins. The pharmacokinetics (PK) and toxicity parameters were analyzed to observe the 'drug-likeness' properties of the compound. Additionally, molecular dynamics (MD) simulation was performed to confirm the binding stability of the compound to the targeted protein. Furthermore, molecular mechanics generalized Born surface area (MM-GBSA) was used to predict the binding free energies of the compound to the targeted protein. Molecular docking simulation identified low glide energy -51.0 kcal/mol and -35.0 kcal/mol score against the RdRp and Mpro, respectively, where MD simulation found good binding stability of the compound to the targeted proteins. In addition, the MM/GBSA approach identified a good value of binding free energies (ΔG bind) of the compound to the targeted proteins. Therefore, the study concludes that the compound 25-HC could be developed as a treatment and/or prevention option for SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.Communicated by Ramaswamy H. Sarma.

2.
Vaccines (Basel) ; 11(5)2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-20232631

ABSTRACT

BACKGROUND: During a pandemic, healthcare workers are at high risk of contracting COVID-19. To protect these important individuals, it is highly recommended that they receive the COVID-19 vaccine. Our study focused on evaluating the safety and efficacy of Egypt's first approved vaccine, the Sinopharm vaccine (BBIBP-CorV), and comparing these findings with other vaccines. METHODS: An observational study was conducted in fifteen triage and isolation hospitals, from the 1st of March until the end of September 2021. The study included fully vaccinated and unvaccinated participants, and we measured vaccine effectiveness (using 1-aHR), the incidence rate of severely to critically ill hospitalized cases, COVID-19-related work absenteeism, and the safety of the vaccine as outcomes. RESULTS: Of the 1364 healthcare workers who were interviewed, 1228 agreed to participate. After taking the hazard ratio into account, the vaccine effectiveness was found to be 67% (95% CI, 80-43%) for symptomatic PCR-confirmed cases. The incidence rate ratio for hospitalization was 0.45 (95% CI, 0.15-1.31) in the vaccinated group compared to the unvaccinated group, and there was a significant reduction in absenteeism among the vaccinated group (p < 0.007). Most adverse events were mild and well tolerated. Vaccinated pregnant and lactating mothers did not experience any sentinel adverse events. CONCLUSION: Our study found that the BBIBP-CorV vaccine was effective in protecting healthcare workers from COVID-19.

3.
HIV Nursing ; 23(2):165-180, 2023.
Article in English | CINAHL | ID: covidwho-2248841

ABSTRACT

The coronavirus (COVID-19) is a global public health pandemic disease emerged from the novel strain of the coronavirus 2 (SARS-CoV-2) that caused severe acute respiratory syndrome. It is the most significant respiratory illness that has affected the world since World War II. Currently, there is no globally approved drug for the treatment of pandemic COVID-19 except for some recently approved vaccines. Instead, various non-specific treatment options are being utilized by different countries. While some of these are effective, there is a lack of well-documented studies on the impact of traditional medicines on the management of SARS-CoV-2 in vitro and in silico. For thousands of years, traditional healers have been using various herbs and spices products and dietary plants to treat various diseases. This review aims to provide information on the use of traditional spices & herbs in COVID-19 protection and treatment and present the main characteristics of these products and their potential antiviral actions. Various databases were searched for articles related to the use of various herbs for the treatment of viral infections. Many of these studies show that various plant compounds can be utilized for the treatment of viral infections. This study aims to summarize the common used of herbal products and dietary supplements with potent bioactive compounds in treatment or prevent of COVID-19.

4.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444229

ABSTRACT

Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections.


Subject(s)
COVID-19/metabolism , Extracellular Vesicles/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Anti-Inflammatory Agents/metabolism , COVID-19/pathology , Extracellular Vesicles/pathology , Female , Humans , Male , Metabolomics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL